ald glann

TR 79-055.1

POWER DENSITY MEASUREMENTS NEAR GTE [Minouaue] TRANSMITTING FACILITIES IN FLORIDA

by

D. Davidson J. M. Musser O. G. Nackoney D. L. Swank

Re: your letter of 1/11/80 GIB LABORATORIES INCORPORATED

Complimits of DR. DAVID DAVIDSON Technical Staff

May 1979

40 Sylvan Road Waltham, Mass. 02154

(617) 890-8460

GTE LABORATORIES INCORPORATED 40 Sylvan Road Waltham, Massachusetts 02154

TABLE OF CONTENTS

Section		Page
	Concise Summary	xi
1	Introduction	1
2	Florida Microwave Transmitting Facilities	3
	2.1 Tampa/Clearwater Facilities	3
	2.2 Homosassa Earth Station	10
· · · 3	Results of Power-Density Measurements	13
	3.1 Highlights of Measurements	14
	3.2 Individual Measurements	16
· · ·	3.2.1 Tampa	17
	3.2.2 Clearwater	30
	3.2.3 Homosassa	32
· · ·	3.3 FCC Compliance Tests	37
4	Predictions of Power Density	39
	4.1 Antenna Patterns	39
	4.2 Power Density from Radio Relay Stations	3.9
	4.3 Power Density Near Earth Station	44
	4.3.1 Earth-Station Antenna Rear-Spillover	45
	4.4 Data Comparison: Measured vs. Calculated	47
a da anti- Anti-	4.5 Elevated Observation Points	48
5	Summary and Conclusions	55
	5.1 Field Measurements	55
	5.2 Calculated vs. Measured Values	57
	5.3 Future Growth	58
6	References	61
7	Acknowledgment of Support	63
Appendix		
А	An Analysis of Power Density Near Periscope Antennas	65
В	Measurement Equipment and Techniques	73
С	Antenna Patterns	95

TR 79-055.1

LIST OF ILLUSTRATIONS

Figure		Page
	TAMPA MAIN - GTE's Microwave Antennas Located in Downtown Tampa	x
· · · ·	Distribution of Florida Field Measurements; Transmissions	
	from GTE Antennas	xii
2.1	Horn-Reflector Antenna	3
2.2	Tampa Main Radio Relay Antenna Tower	4
2.3	Orientation Diagram for Transmitting Antennas Used for Microwave Radio Relay Links	5
2.4	Diagram of Tampa Main Antenna Towers	6
2.5	Diagram of Clearwater Antenna Tower	7
2.6	View of Homosassa Earth Station	11
3.1	Tampa Sites, Downtown	22
3.2	Tampa Sites, Eastern Quadrant	23
3.3	Tampa Sites, Southern Quadrant	24
3.4	Tampa Sites, Western Quadrant	25
3.5	First Florida Tower	27
3.6	Tampa Site T34 at Submarine Dock	29
3.7	Tampa Site T37 under Clearwater Beam	29
3.8	Clearwater Sites	31
3.9	Clearwater Site C4 under Tampa Beam	33
3.10	Homosassa Sites	35
4.1	Geometry for Power Density Calculations	40
4.2	Estimated Radiation Power Density, Per Carrier, for Radio-Relay Station	41
4.3	Power Flux in Front of a Paraboloid	42
4.4	Power Density Per Channel from a Radio-Relay Site	43
4.5	Estimated Radiation Power Density of GSAT Earth Station	46
4.6	Calculation of Rear-Spillover of Parabolic Reflector	46
4.7	Comparison of Measured (Normalized) and Calculated Power Density from Andrew P8-21 (2 GHz) Antenna, 240 ft. AGL	49
4.8	Comparison of Measured (Normalized) and Calculated Power Density from Andrew HP8-19D (2 GHz) Antenna, 280 ft Act	40

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
4.9	Comparison of Measured (Normalized) and Calculated Power Density from Andrew UHX8-59C,D (6 GHz) Antenna, 280 ft. AGL	50
4.10	Comparison of Measured (Normalized) and Calculated Power Density from Andrew UHX10-D (6 GHz) Antenna, 141 ft. AGL	50
4.11	Comparison of Measured (Normalized) and Calculated Power Density from Rohr 6457B,D (6 GHz) Antenna, 314 and 342 ft. AGL	51
4.12	Comparison of Measured (Normalized) and Calculated Power Density from Rohr 6457B,D (4 GHz) Antenna, 254 and 342 ft. AGL	51
4.13	Comparison of Measured (Normalized) and Calculated Power Density from Rohr 6457B,D (4 GHz) Antenna, 254 and 324 ft. AGL	52
5.1	Florida Field Measurements from GTE Antenna Transmissions	56
A-1	Passive Reflector Antenna (Periscope) and Monitor	67
A-2	Power Density from 200-ft Periscope Antenna	69
A-3	Power Density from a 150-ft Periscope Antenna	69
A-4	Power Density from a 100-ft Periscope Antenna	70
A-5	Power Density from a 50-ft Periscope Antenna	70
B-1	Broadband Isotropic Radiation Monitor	76
B-2	Horn Antenna Measuring System Block Diagram	79
B -3	Horn Antenna/Power Meter	80
B-4	Absolute Gain Calibration, Narda Model 645 Standard Gain Horn	81
B-5	Absolute Gain Calibration, Narda Model 643 Standard Gain Horn	82
B-6	Absolute Gain Calibration, Narda Model 642 Standard Gain Horn	82
B-7	Absolute Gain Calibration, Narda Model 640 Standard Gain Horn	83
B-8	2-GHz Bandpass Filter Frequency Response	85
B-9	4-GHz Bandpass Filter Frequency Response	85
B-10	6-GHz Bandpass Filter Frequency Response	86
B-11	11-GHz Bandpass Filter Frequency Response	86

vi

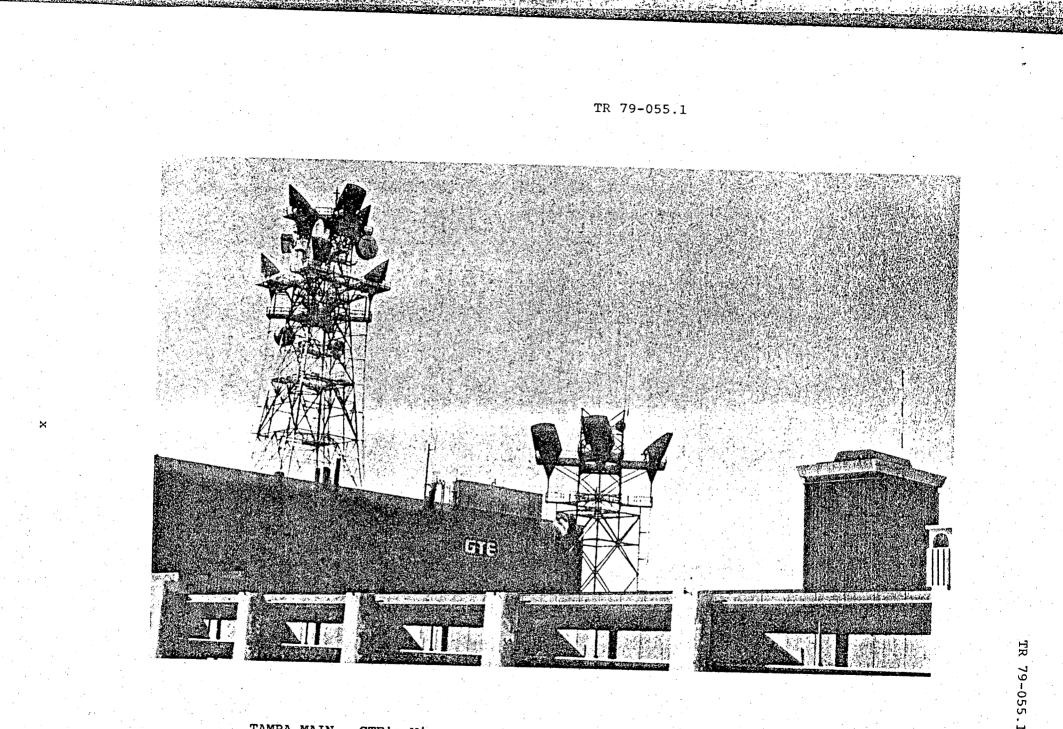

LIST OF ILLUSTRATIONS (Continued)

Figure		Page
B-12	Sample of Field Measurements Data Log	92
C-1	Plane-Polarized 8-ft Antenna, 2110-2300 MC, Directional Pattern Envelope - Both Polarizations	99
C-2	Radiation Pattern Envelope, Antenna Type Number HP8-19D	100
C-3	Radiation Pattern Envelope, Antenna Type Number HP10-19D	101
C-4	Radiation Pattern Envelope, Antenna Type Number UHX8-59C, UHX8-59D	102
C-5	Radiation Pattern Envelope, Antenna Type Number UHX10-59D,	103
C-6	Rohr Horn No. 6457, Modified 6-GHz BD Modification	104
C-7	Rohr Horn No. 6457, Modified 6-GHz BD Modification	105
C-8	Rohr Horn No. 6457, Modified 4-GHz BD Modification	106
C-9	Rohr Horn No. 6457, Modified 4-GHz BD Modification	107
C-10	Radiation Pattern for Homosassa Earth Station Antenna	108

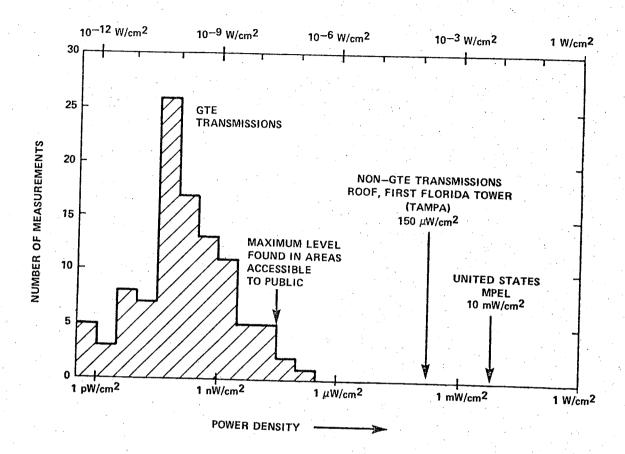
TR 79-055.1

LIST OF TABLES

	Table		Page
	2.1	Key to Tampa Antenna Tower Diagram	8
	2.2	Key to Clearwater Antenna Tower Diagram	8
	2.3	Frequency Allocations	9
	2.4	Summary of Radio Relay Link Resources	10
	3.1	Summary of Tampa Power Densities	15
	3.2	Summary of Clearwater Power Densities	15
	3.3	Summary of Homosassa Power Densities	16
	3.4	Tampa: General Telephone Facilities	18
	3.5	Tampa: Downtown	19
•	3.6	Tampa: Under Antenna Beams (Eastern Quadrant)	20
	3.7	Tampa: Under Antenna Beam (Southern Quadrant)	21
	3.8	Tampa: Under Antenna Beam (Western Quadrant)	21
	3.9	Clearwater: At Tower Base and Under Antenna Beam	30
	3.10	Homosassa: GSAT Earth Station	34
	4.1	Maximum Expected Field Intensities from 10-W Transmitter for Various Antennas and Installations	44
	4.2	Elevated Observations of Field Intensity and Calculations	53
	5.1	Fully-Loaded Microwave Transmission Route; 10W Per Carrier	59
	B-1	Common-Carrier Bands	75
:	B-2	Specification of Narda Probes	77
	B-3	Model Numbers for Horn Antennas and Transitions	81
	B-4	Specifications of Bandpass Filters	84
	B-5	Specifications of Hewlett-Packard Sensors	87
	B-6	Measurement System Effective Area	89
•	B-7	Horn Measurement System Power Density Thresholds	89
			•

TAMPA MAIN - GTE's Microwave Antennas Located in Downtown Tampa

CONCISE SUMMARY


Recognizing present concerns about the magnitude of microwave power densities associated with transmission equipment, GTE Laboratories Incorporated, collaborating with GTE Service Corporation, undertook a program of power density measurements near three different types of GTE common-carrier transmission facilities in Florida. One site, Tampa Main, is a node with six outgoing routes of high traffic cross section. Another site, Clearwater, is a medium-density node in less populated surroundings. The third facility is the Homosassa earth station of GTE Satellite Corporation, located in a rural area. This report covers the results of those measurements, the techniques used, predictions and conclusions.

Over 250 measurements were made at 63 different locations within lineof-sight and in the radio rooms of these transmission facilities. These measurements revealed that the power density encountered was always less than 30 nanowatts/cm² ($3 \times 10^{-8} \text{ W/cm}^2$)in any area accessible to the general public. This level is 1/333,000 that of the present U.S. guideline for maximum permissible exposure level (MPEL), 10 milliwatts/cm² ($1 \times 10^{-2} \text{ W/cm}^2$). The distribution of the measurements is shown in the accompanying figure with relation to the MPEL. [Current revision proposals to the MPEL would only reduce the figure in the region above 2 GHz to 5 milliwatts/cm² ($5 \times 10^{-3} \text{ W/cm}^2$).]

Calculations show that anticipated growth of GTE's transmission facilities or increases in link cross section will not significantly alter the maximum levels found. Further, this report shows that computations using standard electromagnetic methods allow reliable upper-bound predictions to be made of the levels likely to be encountered. The methods used are applicable to antennas of any type or vintage. The highest power density always occurs at ground locations not too far from a microwave relay tower, near the point where the edge of the antenna pattern's main lobe begins to come close to the earth's surface, irrespective of antenna sidelobe properties.

The ambient levels within GTE's transmission facilities accessible to company personnel were found to lie between 20 and 200 nanowatts/cm² $(2 \times 10^{-8} \text{ to } 2 \times 10^{-7} \text{ W/cm}^2)$.

GTE Labs employed special instrumentation comprising directional antennas, filters and very sensitive RF detectors, along with careful calibration and attention to possible sources of spurious readings, in order to measure such low-power density levels. Existing commercial "radiation monitors" are insensitive and wholly inadequate for these kinds of measurements. Finally, the highest power densities encountered in the Tampa area, on the roof of a tall building, were found to be produced by non-GTE sources such as UHF and VHF transmitting antennas.

(NOTE:

The horizontal scale is logarithmic and there are three orders of magnitude (a factor of 1000) between adjacent labeled, marked points. Thus, 1 W/cm² = 1000 mW/cm², etc.)

Distribution of Florida Field Measurements; Transmissions from GTE Antenna