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ABSTRACT 

Present theoretical calculations to determine the power absorption 

characteristics of man have failed to obtain numerical results much beyond the 

first absorption peak (resonance) •. Current efforts are directed towards bet­

ter definition of postresonance whole-body absorption. A geometrical optics 

method has recently been developed_and it is used here to compute the absorp­

tion characteristics of a prolate spheroidal man model in the high frequency 

limit. The technique approximates the surface of the prolate spheroid, by small 

planar subareas. The power transmitted into each subarea is determined, and 

this transmitted power is assumed to be completely absorbed due to the small 

depth of penetration of electromagnetic waves into lossy biological bodies in 

the postresonance region. The total power absorbed is found by summing over 

all subareas. Validity testing ~ith the Mie theory, in conjunction with con­

sideration of the localization principle of geometrical optics, indicates that 

this techni~ue is applicable to the man model at frequencies of 6 GHz and 

above. Computer generated results for a 70-kg prolate spheroidal model of man 

indicate that (1) the dependence of the power absorption on the incident wave 

polarization and angle of incidence is markedly different from the behavior 

seen at lower frequencies, (2) the power absorption increases with frequency 

in the asymptotic limit, and (3) the use of simple planar models is inadequate 

in determining the absorption characteristics of biological bodies at high 

frequencies. 
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INTRODUCTION 

There is presently a great interest in the electromagnetic power absorp­

tion characteristics of man and animals. This interest is the result of recent 

concerns about the possible hazardous effects of this form of nonionizing radia­

tion as well as indications that beneficial medical applications are possible. 

Theoretical calculations play a crucial role in these investigations. The 

understandable reluctance to use human beings in experiments has necessitated 

the use of several species of animals in laboratory power.absorption studies. 

Analytic results complement this experimental research in that the ability to 

theoretically predict the absorption characteristics of biological models aids 

in experimental design as well as permitting the extrapolation of animal results 

to man's body configuration. 

Early theoretical calculations of whole-body absorption used spherical 

models, employing the well-known Mie theory for solution. More recently, a 

long-wavelength approximation has been used to obtain preresonance (resonance 

is defined as the condition of maximum absorption) results for homogeneous 

prolate spheroidal and ellipsoidal models [Massoudi et al~, 1977]. In the 

resonance and postresonance frequency ranges, the Extended Boundary Condition 

Method [Barber, 1977] has been used for homogeneous prolate spheroidal models, 

while a tensor integral equation technique has been used to analyze irregularly 

shaped heterogeneous models constructed of cubical subvolumes [Guru et al., 

1976]. 

In all of these methods, one c-f the goals is to find the average power 

absorption (usually specified in W/kg) as a function of frequency to as high 

a frequency, as possible for different cases of polarization and orientation of 
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the incident wave. The long-wavelength method is inherently limited to low 

frequencies while 'the other two methods, which both require a numerical solu­

tion by digital computer, have an upper frequency limit determined by 

.machine parameters such as core storage and precision. It is clear that new 

approaches to determining the power absorption characteristics of biological 

models at the high end of the frequency spectrum must be found. 

Geometrical optics methods have been used extensively to obtain 

asymptotic high-frequency solutions for scattering and diffraction problems 

[Keller et al., 1956; Keller, 1962]. In this paper a geometrical optics 

method is used to determine high-frequency power absorption in homogeneous 

prolate spheroidal biological mod.els. The method is applicable to high-loss 

dielectric bodies whose physical dimensions are compatible with the "localiza­

tion principle" [Liou et al., 1971; Barri and Wolf, 1964]; i.e., the dimensions 

of the object allow for the assumption that the incident radiation consists 

The of separate localized rays which intersect the object on planar surfaces. 

method becomes increasingly accurate as the size/wavelength ratio and the 

radius of curvature approach infinity. Computer calculations using this method 

provide high frequency numerical results to which lower frequency power absorp­

tion results can be connected. 

METHODOLOGY 

Briefly, the technique requires division of the surface of the prolate 

spheroid into small planar subareas, calculating the area and defining a unit 

normal vector for each area segment, and then using this information to deter­

mine the angle of incidence and the values of the parallel and perpendicular 

.. , 
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components of the incident radiation with respect to the plane of incidence 

for each subarea. Transmission coefficients for each component are then deter­

mined. The power transmitted into each subarea is then calculated and assumed 

to be completely absorbed due to the small depth of penetration of biological 

tissues at higher frequencies. The total power absorbed by the prolate 

spheroid is found by summing the transmitted power over all subareas. 

The initial step of dividing the surfac:e·of the prolate spheroid into 

small planar subareas is handled by setting up a grid on the surface. This 

grid is formed by the intersection.of two sets of curved lines defined by equal 

angular increments of the spherical coordinate angles 6 and¢ as shown in Fig. 1. 

Such a grid results in triangular area segments at the poles and trapezoidal 

segments elsewhere. For small increments in 6 and¢, the area segments can be 

assumed to be planar. Once the area segments have been defined, then the inter­

action of the incident wave with each segment must be determined. This analysis 

requires that a unit normal and numerical area be determined for each segment. 

The unit normals are obtained from the gradient of the surface of the prolate 

spheroid at the midpoint of the planar area segments. Calculated values of .the 

areas are formulated by the values of the angles that subtend them and the size 

of the prol~te spheroid. These parameters enable a calculation of the interac­

tion of the incident radiation with each planar area segment. 

The orientation of the unit normals are analyzed with respect to the 

incident wave, which is defined to lie in the x-z plane (see Fig. 1). The 

propagation vector of the incident wave is given by: 

(1) 
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where CL is the polar angle from the z-axis towards the positive x-axis. The 

two polarizations of the incident wave are represented by.the unit vectors e
1 

and e2, with e
1 

being parallel to the plane defined by the major axis of the 

prolate spheroid and the ak vector, while e2 is perpendicular to this plane. 

These are represented as follows: 

-cos CL a + sin CL a 
X · Z 

(2) 

. (3) 

The relation between the propagation vector ak and a unit normal vector. 

a on a particular segment can be expressed mathematically as: 
n 

cos e. = -a • ak 
1 n (4) 

where e. is the angle of incidence on the subarea. The angle of transmission 
1 

is found from Snell's law [Born and Wolf, 1964] and the angle of incidence: 

sine 
t 

sine. 
1 == --~-------,-

( I • ")J./2 e: - J e: 
(5) 

where Er= e:v - je:11 is the complex dielectric constant of the biological tissue. 

These angles are then utilized in calculating the reflection coefficients for 

the subarea. 

Each subarea has two reflection coefficients [Meyer-Arendt·, 1972; Renx 

et aL, 1967]. One is for the component of the incident electric field which 

is parallel to the plane of incidence. (The plane of incidence is defined as 

the plane in which the normal unit vect-or and propagation vector lie.) This 
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is given by: 

. ")1/2 
JE: 

. ")1/2 
- JS + cos e. 

1. 

(6) 

The other reflection coefficient pertains to the component of the incident 

electric field which is perpendicular to the plane of incidence. The coeffi-

cient is: 

sec e I (e:' t . 
. ")1/2 8 ·. J e: - sec 

i 

r l = e / C ' • ")1/2 + sec t e: - JE: sec e. 
1. 

(7) 

These are then used to calculate the power transmission coefficients for each 

subarea, which are (1 - Ir II I 2) and (1 - Ir 11 2
). 

To implement these coefficients in the proper manner, the incident 

electric field must be broken up into two components for each subarea: one 

parallel to the plane of incidence and one perpendicular to this plane. A 

convenient method of finding these components of the incident electric field 

is to define a unit vector perpendicular to the plane of incidence on each sub­

area and than find components of the incident wave polarization vector which 

are parallel and perpendicular to this vector. A unit vector perpendicular to 

the plane of incidence is: 

a x a 
n k 

a - -
m sin 0. 

1. 

Considering the e1 incident wave, the fra,::tional component of e
1 

which is 

perpendicular to the plane of incidence on a particular subarea is e1 • am 

(8) 



Rowlandson, page 6 

(- - )2 The fraction of power in this plane is e
1 

• am , and the fraction of incident 

power parallel to the plane of incidence is 1 - (e1 • im)2
• The total power 

transmitted into the subarea due to the e
1 

polarized incident wave is then 

found by multiplying the two fractional components of the incident power by 

the appropriate power transmission coefficients, the projected area A, and 
p 

the incident power density S .• 
l. 

S .A 
l. p 

(9) 

The projected area A is the area of the subarea times cos 0 .• The correspond-
p l. 

ing expression.for the power transmitted due to the e
2 

incident wave is found 

from the above expression with e2 substituted for e
1

. This, then, delineates 

the interaction that the incident radiation has with the planar subareas. 

The total power absorbed by the prolate spheroid is calculated by sum­

ming over all subareas and assuming that all of the power transmitted into the 

prolate spheroid is totally absorbed. This is not a tenuous assumption. 

Hodkinson, et al. [1963] found that for spherical 

sorption coefficients, i.e., with e: 11 /[e: 1 + (e: 12 + 

particles with moderate ab-

2)1/2] . 
s" . > • l and diameters 

larger than four wavelengths, internally refracted rays may be neglected. 

Furthermore, Liou, et al. [1971], in stu~ying the scattering by transparent 

particles; found that only three internal reflections were needed to account 

for 99 percent of the scattered energy. This, in addition to the fact that at 

6 GHz biological tissue has a depth of penetration of 2.6 mm (and at 140 GHz 

less than 0.5 mm), makes the calculation of the total absorbed power being 

equal to the summation of aJ..l transmitted powers into the subareas appear 

valid. 

... 
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VALIDITY TESTING 

The equations necessary for the solution of this problem have been 

programmed on a digital computer. The calculation for a particular prolate 

spheroidal model is successively repeated for an increasing number of sub­

areas until convergence of the final result is.achieved. 

Extensive validity testing of the technique was performed by compar­

ing the calculations for spheres with those obtained via Mie theory [Hodkin­

son et al., 1963; Kerker, 1969]. Correspondence within 10 percent was con­

sidered the point at which the geometrical optics technique became valid. 

Figure 2 displays the results of this validity testing by relating the valid 

frequency in GHz to the radius of the spherical muscle tissue model tested. 

It can be seen that at 14 GHz the geometrical optics technique can be used to 

calculate the absorption characteristics of a spherical muscle model of man 

(radius= 0.256 m) with a confidence of 10 percent. 

Although the relationship between valid frequency and sphere size is a 

straight line on this log-log scale, the slope is not minus one and therefore 

the relationship cannot be expressed by a constant value of ka (2rra/A) as might 

be expected. A curve of constant ka (slope= minus one) is shown in Fig. 2 

for comparison. 

The reason that the validity criterion cannot be described by a constant 

ka value has to do with the frequency dispersion of the permittivity -and con­

ductivity of muscle tissue. For example, for a constant ka value, calculations 

for two spheres with different radii must be made at two different frequencies, 

which therefore requires the use of different dielectric characteristics. 

Figure 3 compares absorption calculations for two muscle spheres using 
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both Mie theory and geometrical optics approaches. Note particularly the unique ~ 

resonance characteristics of the two spheres which are caused by the dispersion 

of the di~lectric characteristics. It can be seen that the resonance character­

istics of a lossy sphere are greatly influenced by the dielectric character­

istics. The geometrical optics calculation cannot account for resonance be-

havior and therefore deviations between the two methods occur at lower fre­

quencies and these deviations occur at different rates for different spheres, 

which accounts for the nonconstant ka value for applicability of the geometrical 

optics approach. Furthermore, since the larger spheres acquire valid solutions 

more gradually, different slopes of valid ka are obtained for 10 and 20 per-

cent convergence as indicated in Fig. 4. 

Extension of this technique to other models requires that the local 

radius of curvature and overall size of the model be much greater than a wave..,.. 

length. For a sphere these conditions are satisfied simultaneously. In the 

case of the prolate spheroid, the second condition is automatically satisfied. 

if the first condition is met. For a prolate spheroidal model of man (height 

1.75 m, width 0.276 m), .the minimum radius of curvature is 0.0218 m. From 

Fig. 2 this minimum radius of curvature indicates that geometrical optics cal­

culations should be computed at a minimum frequency of 130 GHz in order to ob­

tain an accuracy of 10 percent. To restrict calculations for the man-sized 

prolate spheroid to this high frequency would be an exceedingly stringent 

criterion, for the minimum radius of curvature occurs at the poles of the 

spheroid, an area that receives only grazing incident radiation when a= 90°. 

Furthermore, much of the surface of the prolate spheroid approximates a planar 

surface. (The maximum local radius of curvature at the equator of the prolate 
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spheroid is 5.548 m.) Therefore, an intermediate value for the minimum radius 

of curvature would seem more logical as the limiting criterion for extension of 

this technique to the prolate spheroid. A reasonable value is the dimension b 

(= 0.138 m), the local minimum radius of curvature at the equator of the 

prolate spheroid. From Fig. 2, calculations using this dimension as the 

criterion give a minimum valid frequency of 27 GHz (for 10 percent convergen~e) 

and could be said to fulfill the localization principle at the equator. Using 

larger radii than the b dimension would result in the localization principle 

not being adequately fulfilled anywhere on the surface of the spheroid. For 

other prolate spheroidal models, a similar analysis may be done to find the 

frequency of appropriate applicability. 

NUMERICAL RESULTS 

Geometrical optics power absorption calculations have been made for a 

number of biological models. Figure 5 shows the absorption characteristics of 

a 70 kg prolate spheroidal man model. The lower frequency results were obtained 

via the Extended Boundary Condition Method [Barber, 1977] while the results at 

the higher ~requencies were obtained by the geometrical optics analysis 

described here. 

Before discussing the results, a word should be said about the dielectric 

characteristics that were used in making the calculations. The lower frequency 

Extended Boundary Condition calculations use dielectric constants and conductivi­

ties suitable for tissue consisting of a homogeneous mixture of muscle, fat; and 

bone. Volume averaging the different tissues of man indicates that these .values 

should be two-thirds those of muscle tissue [Rowlandson, 1977]. This two-
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thirds value is appropriate at the lower frequencies where the depth of penetra­

tion is large and the electromagnetic interaction occurs throughout the volume 

of the prolate spheroidal model. At the higher frequencies, however, the depth 

of penetration is small and the total interaction occurs close to the surface. 

(The depth of penetration is only a few millimeters for the lowest frequency 

for which calculations have been made.) At these higher frequencies, electrical 

characteristics corresponding to skin tissue have been used. Specifically, skin 

is a high-water-content tissue and the dielectric characteristics can be ob­

tained from high frequency muscle tissue expressions based on the Debye theory 

for electrically polarizable molecules [Weil, 1975]: 

and 

a = 

e:' = 5 112 + (f/20)
2

] 

1 + (f/20)
2 

[
1 + 62 (f/20)

2
] 

1 + (f/20)
2 mho/m 

(10) 

(11) 

where f is in GHz. These expressions were multiplied by factors (e:' (0.814), 

a (0.78)) i~ order to obtain better results in agreement with lower frequency 

muscle tissue data. 

It is interesting to note that in the intermediate frequency range, 

recent work has shown that the skin-fat-muscle layers at the surface play a 

major role in whole-body absorption and while homogeneous models can be used at 

low and high frequencies, accurate calculations at intermediate frequencies re~ 

quire an inhomogeneous model. 

The E, H, K notation in Fig. 5 refers to the fact that E and H represent 

\. 
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the wave in Fig. 1 incident at an angle of ninety degrees, with E correspond­

ing to the e
1 

incident case and H to the e2 case. The K casE'.? is for the wave 

incident at zero degrees. Note that relaxing the convergence criteria allows 

calculations to be made down to 6 GHz. 

These results indicate that biological bodies have moderate to. high 

absorption characteristics at the higher frequencies. Also, there is a 

reversal in the power absorption characteristics of the different incident 

waves between the lower and higher frequencies. At lower frequencies, a quasi­

static analysis based on the boundary conditions at the surface and eddy-cur­

rent considerations has ~hown that the E incident wave is strongly coupled· 

into the spheroid, with progressively weaker coupling by the Kand H incident 

waves [Durney et al., 1975]. In the high-frequency geometrical optics limit, 

the relative coupling can be analyzed from a surface reflection coefficient 

standpoint. The E incident wave has an electric field component which is 

generally perpendicular to the incident plane of the subareas while the H 

incident wave has an electric field component which is generally parallel to 

the incident plane. The reflection coefficient for perpendicular electric 

field components is greater [Meyer-Arendt, 1972), thereby giving less trans­

mitted power for the E wave than the H wave. The K incident wave impinges on 

most of the subareas at· incident angles close to ninety degrees, and therefore 

most of the incident wave is reflected giving lower absorption. This reversal 

'of power absorption characteristics at the higher frequencies has been con­

firmed experimentally [Gandhi et al., 1977]. Furthermore, these results 

indicate that the decline in complex dielectric with frequency produces lower 

surface reflection coefficients and subsequently greater absorption at the 

frequency increases. Massoudi, et al. [1977], also encountered this in 
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implementing his infinite cylinder model. His results are within 4 percent 

of the results in Fig. 5 for E and H polarizations •. 

High frequency calculations have been made using planar models to see 

how well they compare to these geometrical optics results. It was found that 

the results using a planar model are too large, with some being more than 100 

percent too large as compared to the prolate spheroidal model. The reason 

for this discrepancy is that the planar model does not take into considera­

tion the sharp decrease in transmitted power which occurs when the local angle 

of incidence is not normal to the surface. 

CONCLUSIONS 

A method has been outlined, which is based on geometrical optics, that 

enables calculation of the power absorption characteristics of prolate 

spheroidal models of biological bodies at the high end of the frequency 

spectrum. _The primary use of these results is that they provide asymptotes 

to which previously calculated low-frequency results can be connected. The 

technique has been validity tested through comparison of calculations for 

spheres from the Mie theory. 

Calculations for a prolate spheroidal model of man using the b dimen­

sion of the spheroid as the limiting radius of curvature have permitted cal­

culations down to 6 GHz for the man model. These results are expected to be 

accurate within 20 percent. The results from this prolate spheroidal model 

indicate that (1) the maximum power is deposited by the H incident wave, with 

decreasing absorption due to E and K waves, a reversal of the behavior seen 

at lower frequencies, (2) due to the decrease in permittivity with increasing 

I.. 
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frequency, which effectively results in a better impedance match between the 

model and surrounding free space, biological bodies experience increasing 

absorption as the frequency increases, and (3) the use of simple planar 

models is inadequate in calculating the absorption characteristics of biologi­

cal bodies. 
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FIGURE CAPTIONS 

1. Orientation of the prolate spheroid and an individual subarea with 

respect to the inciden.t wave. 

2. Valid frequency (10 percent convergence criteria) versus radius of 

spherical muscle model. The dashed line of constant ka is for 

comparison. 

3. Convergence testing results for• two different muscle spheres showing 

the frequencies of 10 percent and 20 percent convergence~ 

4. ka versus sphere radius for 10 percent and 20 percent convergence criteria. 

5. SAR in a 70-kg prolate spheroidal roan model for an incident power density 

of 1 roW/cm2• Height= 1.75 m, height/width·= 6.34. Relaxing the con-

vergence criteria to 20 percent (based on the minimum radius of curvature 

at the equator) permits calculations down to 6 GHz. 
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